Page 104 - Klymenko_TB07
P. 104
works of the Institute of Horticulture, Lithuanian Research Centre for Agriculture and
Forestry and Aleksandras Stulginskis University. Sodininkystė ir Daržininkystė, vol. 33(1–
2), р. 45–52.
Rumpunen, K. 2002. Chaenomeles: Potential new fruit crop for Nortern Europe. In: J. Janick
and A. Whipkey (eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA, p.
385‒392.
Rupprecht, J.K., Chang, C. J., Cassady, J.M., McLaughlin, J.L., Mikolajczak, K.L. Weisleder,
D. 1986. Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina
triloba (Annonaceae). Heterocycles, vol. 24, р. 1197–1201.
Saied, S., Begum, S. 2004. Phytochemical studies of Berberis vulgaris. Chem Nat Compd., vol.
40(2), р. 137–40. DOI: 10.1023/B:CONC.0000033929.60336.bb.
Salem, M.Z.M., Mohamed, N.H. 2013. Physico-Chemical Characterization of Wood from
Maclura Pomifera (Raf.) C.K. Schneid. Adapted to the Egyptian Environmental Conditions.
Journal of Forest Products & Industries, vol. 2(2), р. 53–57. ISSN: 2325–4513.
Saunders, R.M.K. 2000. Systematic Botany Monographs Monograph of Schisandra
(Schisandraceae), vol. 58, p. 1–146. DOI: 10.2307/25027879.
Schrall, R., Becker, H. 1977. Production of catechins and oligomeric proanthocyanidins in
callus and suspension cultures of Crataegus monogyna, C. oxyacantha and Ginkgo biloba.
Planta Med., vol. 4, p. 297–318.
Shi, G.S., Wang, X.L., Huang, S.F. 1985. Karyotype analysis of Cornus officinalis. J. Zhejiang
Forest. Coll., vol. 2(1), p. 81–84.
Shin, S.R., Hong, J.Y., Yoon, K.Y. 2008. Antioxidant properties and total phenolic contents of
cherry elaeagnus (Elaeagnus multiflora Thunb.) leaf extracts. Food Science and
Biotechnology, vol. 17(3), р. p. 608–612.
Shukla, Y.N., Kapadia, G.J., Govind, J. 1989. Chemical constituents of Diospyros virginiana.
Indian J. Pharm. Sci., vol. 51(2), р. 73.
Sikora, E., Bieniek, M.I., Borczak, B. 2013. Composition and antioxidant properties of fresh
and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Sci. Pol., Technol. Aliment.,
vol. 12(4), р. 365–372.
Strugała, P., Cyboran-Mikołajczyk, S., Dudra, A., Mizgier, P., Kucharska, A.Z., Olejniczak,
T., Gabrielska, J. 2016. Biological activity of Japanese quince extract and its interactions
with lipids, erythrocyte membrane, and human albumin. J Membrane Biol., vol. 249, р. 393–
410.
Sultana, N., Lee, N.H. 2007. Antielastase and free radical scavenging activities of compounds
from the stems of Cornus kousa. Phytother Res., vol. 21(12), р. 1171–1176.
Sun, J.H., Liu, X., Cong, L.X., Li, H., Zhang, C.Y., Chen, J.G,, Wang, C.M. 2017. Metabolomics
study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced
hyperlipidemia mice. Lipids Health Dis., vol. 16(1), р. 1–14. DOI: 10.1186/s12944-017-
0533.
Sun, X.F., Yao, Q.Y. 1987. Chemical constituents from seed of Crataegus pinnatifida Bge. Chin.
Tradit. Herbal Drugs, vol. 18, p. 441–454.
Svarcova, I., Heinrich, J., Valentova, K. 2007. Berry fruits as a source of biologically active
compounds: the case of Lonicera caerulea. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc
Czech Repub., vol. 151(2), p. 163–174. DOI: 10.5507/bp.2007.03.
Svarcova, I., Heinrich, J., Valentova, K. 2007. Berry fruits as a source of biologically active
compounds: the case of Lonicera caerulea. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc
Czech Repub., vol. 151(2), p. 163–174. DOI: 10.5507/bp.2007.03.
Sydora, N.V., Demechko, O.V. 2016. Research the antimicrobical activity of Crataegus
submollis Sarg. fruits lipophylic extract. с. 124–125. Available at:
http://dspace.nuph.edu.ua/bitstream/123456789/11287/1/124-125.pdf.
101