Page 88 - PC01_L13
P. 88
48. Dy’az R., Quinlivan E. P., Klaus S. M. et al. Folate biofortification in tomatoes by
engineering the pteridine branch of folate synthesis // Proc. Natl. Acad. Sci. USA. –
2004. – 101. – P. 13720–13725.
49. Enfissi E. M. A., Fraser P. D., Lois L. M. et al. Metabolic engineering of the mevalonate
and nonmevalonate isopentenyl diphosphateforming pathways for the production of
health promoting isoprenoids in tomato // Plant Biotechnol. J. – 2005. – 3. – P. 17–27.
50. Yu O., Jung W., Shi J. et al. Production of the isoflavones genistein and daidzein in
nonlegume dicot and monocot tissues // Plant Physiol. – 2000. – 124. – P. 781–794.
51. Lukaszewicz M., Matysiak-Kata I., Skala J. et al. Antioxidant capacity manipulation in
transgenic potato tuber by changes in phenolic compounds content // J. Agric. Food
Chem. – 2004. – 52. – P. 1526–1533.
52. Shin Y., Park H., Yim S. et al. Transgenic rice lines expressing maize C1 and RS
regulatory genes produce various flavonoids in the endosperm // Plant Biotechnol. J. –
2006. – 4. – P. 303–15.
53. Yu O., Shi J., Hession A. O. et al.Metabolic engineering to increase isoflavone
biosynthesis in soybean seed // Phytochemistry. – 2003. – 63. – P. 753–763.
54. Muir S. R., Collins G. J., Robinson S. et al. Overexpression of petunia chalcone
isomerase in tomato results in fruit containing increased levels of flavonols // Nature. –
2001. – 19. – P. 470–474.