Page 88 - PC01_L13
P. 88

48. Dy’az R., Quinlivan E. P., Klaus S. M. et al. Folate biofortification in tomatoes by

      engineering the pteridine branch of folate synthesis // Proc. Natl. Acad. Sci. USA. –
      2004. – 101. – P. 13720–13725.

 49. Enfissi E. M. A., Fraser P. D., Lois L. M. et al. Metabolic engineering of the mevalonate

      and nonmevalonate isopentenyl diphosphateforming pathways for the production of

      health promoting isoprenoids in tomato // Plant Biotechnol. J. – 2005. – 3. – P. 17–27.
 50. Yu O., Jung W., Shi J. et al. Production of the isoflavones genistein and daidzein in

      nonlegume dicot and monocot tissues // Plant Physiol. – 2000. – 124. – P. 781–794.

 51. Lukaszewicz M., Matysiak-Kata I., Skala J. et al. Antioxidant capacity manipulation in
      transgenic potato tuber by changes in phenolic compounds content // J. Agric. Food

      Chem. – 2004. – 52. – P. 1526–1533.

 52. Shin Y., Park H., Yim S. et al. Transgenic rice lines expressing maize C1 and RS

      regulatory genes produce various flavonoids in the endosperm // Plant Biotechnol. J. –
      2006. – 4. – P. 303–15.

 53. Yu O., Shi J., Hession A. O. et al.Metabolic engineering to increase isoflavone

      biosynthesis in soybean seed // Phytochemistry. – 2003. – 63. – P. 753–763.
 54. Muir S. R., Collins G. J., Robinson S. et al. Overexpression of petunia chalcone

      isomerase in tomato results in fruit containing increased levels of flavonols // Nature. –

      2001. – 19. – P. 470–474.
   83   84   85   86   87   88   89   90   91   92   93