Page 87 - Rakhmetov_TB03
P. 87
Ярошевич, М.И., Вечер, Н.Н. 2010. Топинамбур (Helianthus tuberosus L.) – перспективная
культура многоцелевого использования. Труды БГУ, том 4, вып. 2. Электронный ресурс.
Режим доступа: http://www.bio.bsu.by/proceedings/articles/2009-4-2-198-208.pdf. 48.
Abramovic, H., Abram, V. 2005. Physico-chemical properties, composition and oxidative stability of
Camelina sativa oil. Food Technology and Biotechnology. vol. 43(1), p. 63–70.
Amalraj, V. 2006. Balasundaram N. On the taxonomy of the members of "Saccharum complex".
Genetic Resources and Crop Evolution, vol. 53(1), p. 35–41.
Baer, G.Ya., Yemets, A.I., Stadnichuk, N.A., Rakhmetov, D.B., Blume, Ya.B. 2007. Somaclonal
Variability As a Source for Creation of New Varieties of Finger Millet (Eleusine coracana (L.)
Gaertn.). Cytology and genetics, vol. 41(4), p. 204–208. ISSN:0095-4527.
Bauer, S., Sorek, H., Mitchell, V. et al. 2012. Characterization of Miscanthus ×giganteus lignin
isolated by etanol Organosolv process under reflux condition. Journal Agricultural Food Chemistry,
vol. 60(3), p. 8203–8212.
Blume, R., Rakhmetov, D. 2017. Comparative analysis of oil fatty acid composition of Ukrainian
spring Camelina sativa breeding forms and varieties as a perspective biodiesel source.
Электронный ресурс. Режим доступа : http://www.brassica.info/info/publications/cruciferae-
newsletter.php.
Brassica fodder crops for fall grazing. Center for Agriculture, Univ of Massachusetts, Amherst.
2012. Електронний ресурс. Режим доступу : http://extension.umass.edu/ cdle/fact-
sheets/brassica-fodder-crops-fall-grazing.
Cais-Sokolinska, D., Majcher, M., Pikul, J., Bielinska, S., Czauderna, M., Wojfowski, J. 2011. The
effect of Camelina sativa cake diet supplementation on sensory and volatile profiles of ewe’s milk.
African Journal of Biotechnology, vol. 10(37), p. 7245–7552.
Cherian, G. 2012. Camelina sativa in poultry diets: opportunities and challenges. Biofuel co-products
as livestock feed. Opportunities and challenges. Rome: Food and agriculture organization of the
united nations, p. 303–310.
Chou, C.H. 2009. Miscanthus plants used as an alternative biofuel material: the basic studies on
ecology and molecular evolution. Renewable Energy, vol. 34, p. 1908–1912.
Christian, D.G., Riche, A.B., Yates, N.E. 2008. Growth, yeld and mineral content of Miscanthus
×giganteus grown as a biofuel for 14 successive harvests. Industrial crops and products, vol. 28, p.
320–327.
Clifton-Brown, J., Breuer, J., Jones, M. 2007. Carbon content by the energy crop Miscanthus. Global
Change Biology, vol. 11, p. 296–307.
Crambe cordifolia. Электронный рурс. – Режим доступа https://www.sarahraven.com/flo-
wers/plants.
Crambe cordifolia. Электронный рурс. Режим доступа http://www.finegardening.com/colewort-
crambe-cordifolia.
Dahl, J. 2004. Evaluation of the combustion characteristics of four perennial energy grops Arundo
donax, Cynara candunculus, Miscanthus ×giganteus and Panicum virgatum. Obernberger 2 World
nd
Conference on biomass for energy: Industry and climate protection. Rome, p. 1265–1270.
Dale, B., Kim, S. 2004. Cumulative energy and global warming impact from the production of
biomass for biobased products. Journal of Industrial Ecology, vol. 7(3-4), p. 147–162.
Davidson, C.G., Gobin, S.M. 1998. Evaluation of ornamental grasses for the northern Great Plains. J.
Environ. Hort, vol. 16, p. 218–229.
Deng, Q., Huang, F., Huang, Q., Xu, J., Liu, C. 2001. Lipid-lowering evaluation of cold-pressed
Camellina sativa oil. Journal of Food, Agriculture and Environment, vol. 9, p. 157–162.
Deuter, M., Abraham, J. 2000. Wissenstand in der Miscanthus-Züchtung. Miscanthus. Anbau und
Vermehrung. Bonn, p. 8-14.
Dohleman, F.G., Long, S.P. 2009. More productive than maize in the midwest: how does Miscanthus
do it. Plant Physiol., vol. 150(4), p. 2104–2115.
Dondini, M. 2009. The potential of Miscanthus to sequester carbon in soils: comparing field
measurements in Carlow, Ireland to model predictions. Global Change Biology Bioenergy, no. 1-6, p.
413–425.
83